Quantitative stability for the Brunn-Minkowski inequality

نویسندگان

  • Alessio Figalli
  • David Jerison
چکیده

We prove a quantitative stability result for the Brunn-Minkowski inequality: if |A| = |B| = 1, t ∈ [τ, 1−τ ] with τ > 0, and |tA+(1−t)B| ≤ 1+δ for some small δ, then, up to a translation, both A and B are quantitatively close (in terms of δ) to a convex set K.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative stability results for the Brunn-Minkowski inequality

The Brunn-Minkowski inequality gives a lower bound on the Lebesgue measure of a sumset in terms of the measures of the individual sets. This inequality plays a crucial role in the theory of convex bodies and has many interactions with isoperimetry and functional analysis. Stability of optimizers of this inequality in one dimension is a consequence of classical results in additive combinatorics....

متن کامل

A Mass Transportation Approach to Quantitative Isoperimetric Inequalities

A sharp quantitative version of the anisotropic isoperimetric inequality is established, corresponding to a stability estimate for the Wulff shape of a given surface tension energy. This is achieved by exploiting mass transportation theory, especially Gromov’s proof of the isoperimetric inequality and the Brenier-McCann Theorem. A sharp quantitative version of the Brunn-Minkowski inequality for...

متن کامل

Volume difference inequalities for the projection and intersection bodies

In this paper, we introduce a new concept of volumes difference function of the projection and intersection bodies. Following this, we establish the Minkowski and Brunn-Minkowski inequalities for volumes difference function of the projection and intersection bodies.

متن کامل

The Infinitesimal Form of Brunn-minkowski Type Inequalities

Log-Brunn-Minkowski inequality was conjectured by Boröczky, Lutwak, Yang and Zhang [7], and it states that a certain strengthening of the classical Brunn-Minkowski inequality is admissible in the case of symmetric convex sets. It was recently shown by Nayar, Zvavitch, the second and the third authors [27], that Log-Brunn-Minkowski inequality implies a certain dimensional Brunn-Minkowski inequal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014